

Machine learning based Airfoil Performance Model for rough and eroded conditions

6th International Symposium on Leading Edge Erosion and Protection of Wind Turbine Blades DTU February 2025

> Guillén Campaña-Alonso David Bretos Ion Lizarraga-Saenz David Astrain Beatriz Méndez-López

What is the APM?

The Airfoil Performance Model estimates the aerodynamic performance of an airfoil taking into account its **surface status** by means of **machine learning** algorithms

What is the APM?

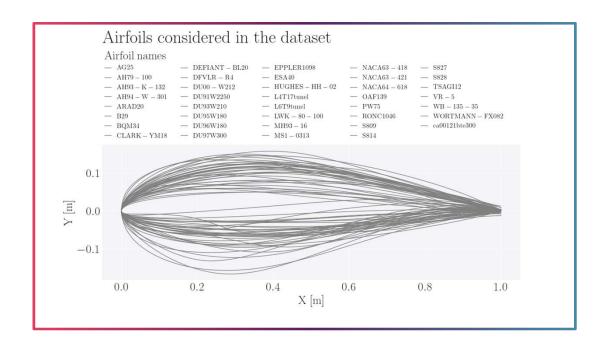
The Airfoil Performance Model estimates the aerodynamic performance of an airfoil taking into account its **surface status** by means of **machine learning** algorithms

Applicability to wind turbine Blades, covering airfoils at the 25% outermost part of the blade

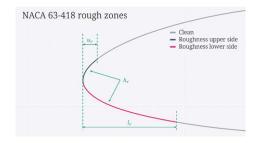
High fidelity results with smaller simulation time than CFD

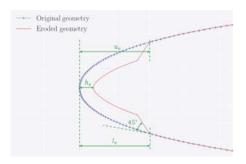
Capability to determine the influence of the surface status on the aerodynamic performance

AEP Losses stimations


General use, extrapolation to airfoils not considered within the dataset

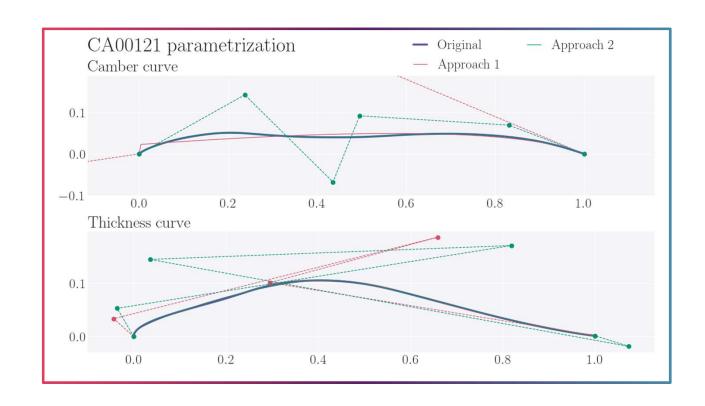
Accurate prediction of the aerodynamic performance of an airfoil considered in the training dataset





Training Dataset

- 39 airfoils
- Simulated using CFD for clean, rough and erosion conditions (3465 simulations per airfoil)
- Thickness limited to 7,5% 30%
- Reynolds from 6 to 12 million

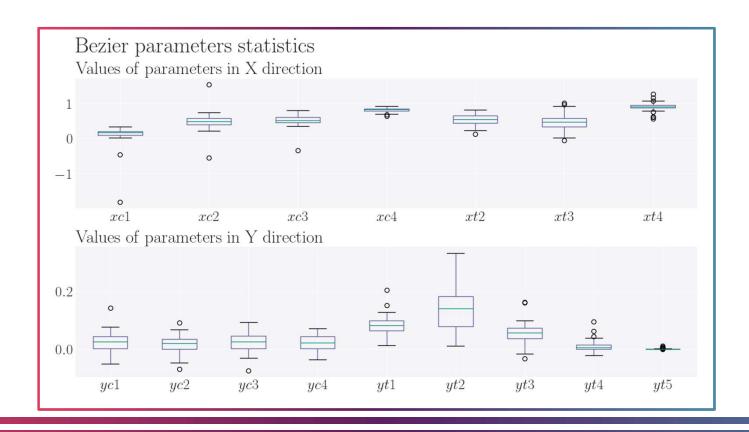

Training Dataset

Bezier parametrization

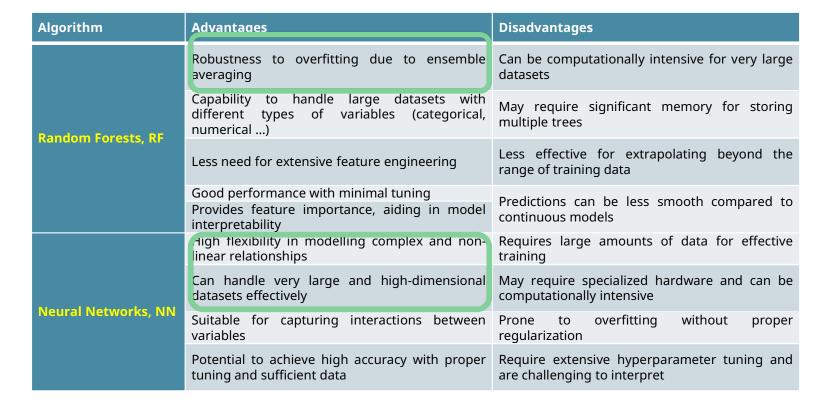
- Based on XFoil coordinate file with 345 points
- Camber and thickness curves obtained following the British convention
- Camber and thickness curves fitted to n-th degree Bezier curve represented by n+1 control points
- Restrictions:

First and last points coincident with the curve

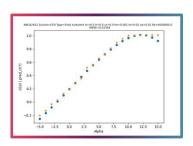
Second point of the thickness curve forced to be on the vertical direction of the first point

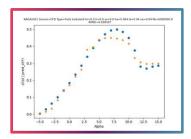


Training Dataset


Geometrical Parameters distribution

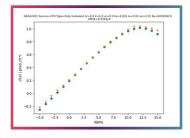
ML algorithm selection

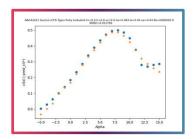


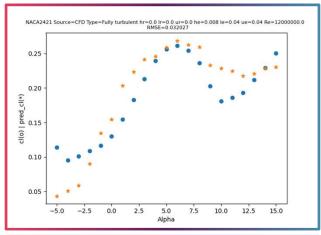


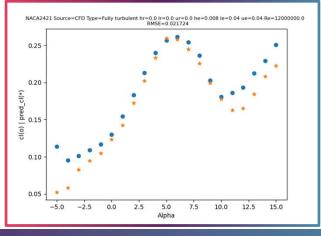
ML algorithm selection

(NACA 2421 not included in the training dataset)






RMSE 0,032



RMSE 0,022

Final models

- Neural networks are employed
- One model trained for each coefficient and condition resulting in 6 models
- 3465 simulations per airfoil
- Include clean, rough and eroded conditions

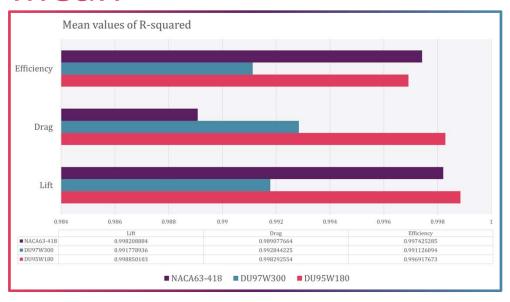
	Model	Layers	Nodes per layer
Roughness	Lift	4	512
	Drag	4	512
	Efficiency	2	200 and 100
Erosion	Lift	2	500 and 250
	Drag	2	500 and 250
	Efficiency	2	500 and 250

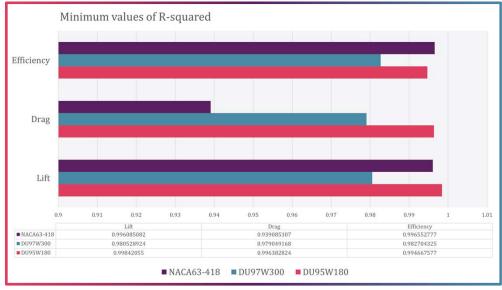
Three tests selected

Test 1: three airfoils used for the training are tested at different rough conditions and Reynolds numbers from the ones used to create the dataset

Test 2: six new airfoils stimated with the rough model (3 of them are high thickness and complex thickness and camber curves)

Test 3: 26 airfoil tested with the erosion model for conditions excluded from training and validation phases

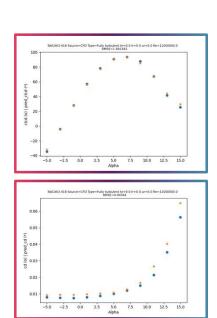


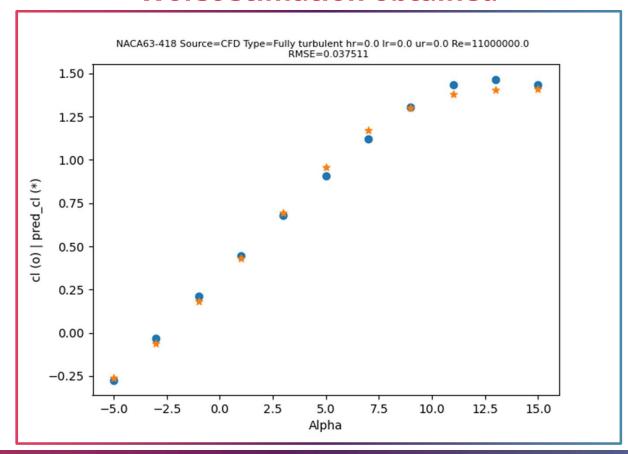

Test 1 (three airfoils used for the training are tested at different rough conditions and Reynolds numbers from the ones used to create the dataset)

Airfoil	Re (millions)	u_r	l_r	h_r	Total curves
DU95W180	7.5, 8, 10	0.1	0.1	0, 2e-4, 3.5e- 4	9
DU97W300	7.5, 8, 10	0.1	0.1	0, 2.5e-4, 3.5e-4	9
NACA63-418	7, 9, 11	0.13, 0.18	0.13, 0.18	0, 2e-4, 3.5e- 4	27

Mean

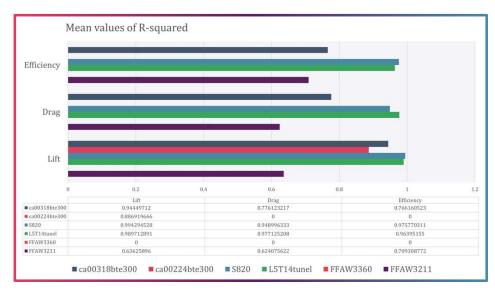
Minimun





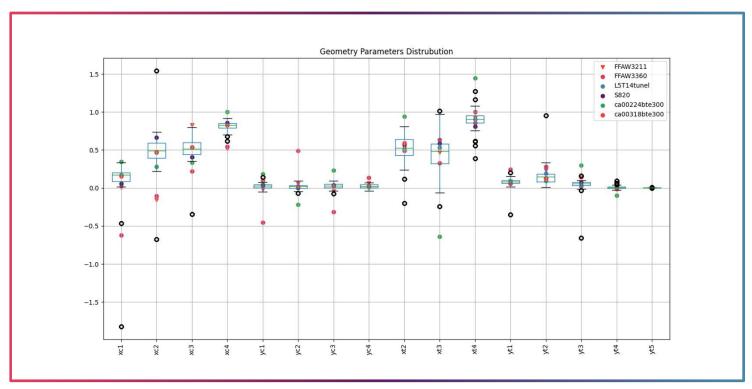
Test 1 (the worst stimation is shown and it is more than satisfactory)

Worst stimation obtained



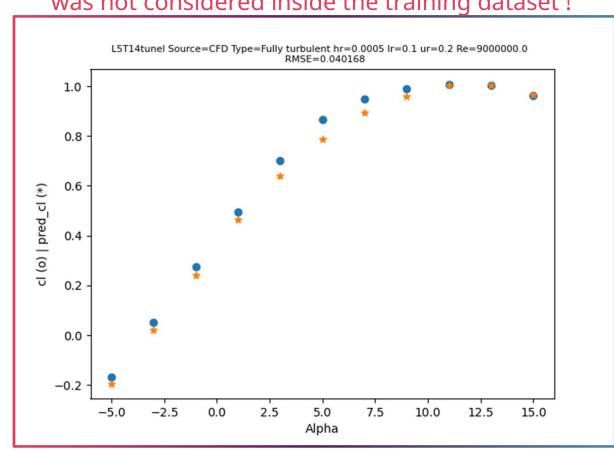
Test 2 (six new airfoils stimated with the roughness model)

Airfoil	Re (millions)	u_r	l_r	h_r	Total curves
FFAW3211	6	0.1, 0.2	0.2	0, 2.5e-4	3
L5T14Tunel	9	0.2	0.1, 0.15	0, 5e-4	3
S820	6, 12	0.15	0.15	0, 2.5e-4	4
ca00318bte30 0	9	0.2	0.2	0, 1e-4, 2.5e- 4, 5e-4	4
ca00224bte30 0	9	0.1	0.1	0, 1e-4, 2.5e- 4, 5e-4	4
FFAW3360	6	0.1, 0.2	0.1, 0.2	0, 2.5e-4	5


Poor stimations for some airfoils:

- FFAW3360 due to the high thickness
- CAs airfoils due to extreme thickness and camber
- FFAW3211: why?

Test 2 (six new airfoils stimated with the roughness model)


Comparing with the database statistical analysis of geometry parameters:

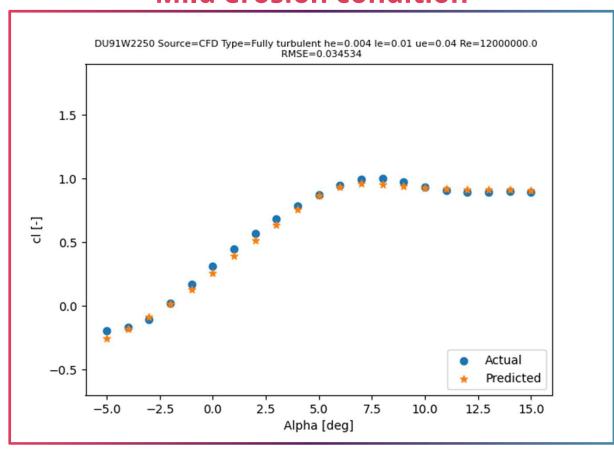
- FFAW3360 due to the high thickness
- CAs airfoils due to extreme thickness and camber
- FFAW3211: is out of the wishkers of the database TRIANGLES

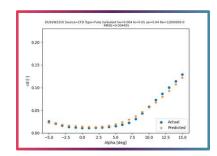
Test 2 (six new airfoils stimated with the roughness model)

L5T14 good stimation considering that this airfoil was not considered inside the training dataset!

Test 3 (testing the erosion model for 26 random erosion conditions excluded from the training and validation phases)

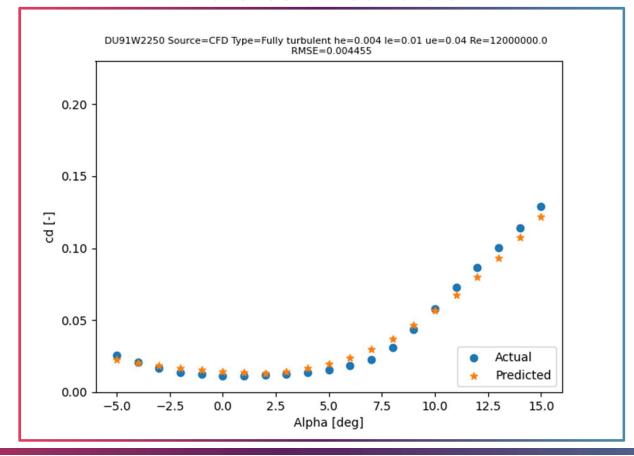
N.				
Name	he	le	ue	Re
AG25	0.001	0.04	0.02	6000000
AH79-100	0.004	0.01	0.04	9000000
B29	0.008	0.02	0.02	12000000
CLARK-YM18	0.001	0.02	0.01	6000000
DEFIANT-BL20	0.004	0.01	0.02	12000000
DFVLR-R4	0.001	0.02	0.01	6000000
DU91W2250	0.004	0.01	0.04	12000000
DU93W210	0.008	0.01	0.01	6000000
DU95W180	0.001	0.04	0.01	9000000
DU96W180	0.004	0.04	0.01	9000000
DU97W300	0.008	0.01	0.02	12000000
EPPLER1098	0.001	0.04	0.02	6000000
HUGHES-HH-02	0.004	0.02	0.02	9000000
L4T17tunel	0.008	0.02	0.04	12000000
L6T9tunel	0.001	0.02	0.01	6000000
MH93-16	0.001	0.01	0.02	9000000
MS1-0313	0.008	0.02	0.04	6000000
NACA63-418	0.004	0.02	0.02	9000000
NACA63-421	0.001	0.04	0.04	12000000
NACA64-618	0.008	0.04	0.04	6000000
RONC1046	0.001	0.01	0.01	6000000
S809	0.008	0.02	0.02	6000000
S814	0.008	0.02	0.01	12000000
S827	0.001	0.04	0.01	9000000
WB-135-35	0.004	0.02	0.04	6000000
ca00121bte300	0.008	0.01	0.01	9000000


Good agreement!



$Test\ 3$ (testing the erosion model for random erosion conditions)

Mild erosion condition



$Test\ 3$ (testing the erosion model for random erosion conditions)

00/118/2250 Source-CTD hyper-fluir trabulants are 2 008 e=0 61 se=0 64 &e=12000000 0 1.5 1.0 -0.5 -0.5 -0.5 -0.7 A/hpha [deg]

Mild erosion condition

Neural networks perform better than random forest Accurate predictions on new conditions for existing airfoil

6 models developed: 2 per condition, 3 per coefficient

Accurate predictions if new airfoil parameters considered within dataset range

Advanced study of the atmospheric flow integrating real climate conditions

gcampana@cener.com bmendez@cener.com AIREproject@cener.com

