

AIRE measurement campaigns and data analysis

Charlotte Bay Hassager (DTU) and Beatriz Méndez (CENER)
WESC Conference Nantes 26th June 2025

Horizon Europe Project (2023-2026)

How **site location** and **climate conditions** affect wind turbine and wind farm operation and design?

AIRE makes a holistic approach to:

- Study the effect that variables such as precipitation and dust have on wind turbines and wind farms operation.
- Improve wind turbine and wind farm design and control.
- Increase wind energy efficiency.

PLOCAN Offshore SG132

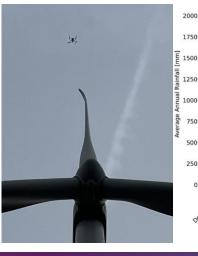
Ot	wner	Name of site	EQUIPMENT
CI	NER	Alaiz Experimental Wind farm	Micro Rain Radar, V2 lidar 4 met mast 118m Wind vanes, cup anemometers, sonic anemometers Parsivel
I	TU	Risø Campus experimental site	Meteorological mast up to 123m Disdrometers Parsivel and Thies Micro Rain Radar and V2 lidar
o	REC	Levenmouth Demonstrator Turbine	Parsivel Lidar, KIPP & ZONEN UVS Radiometer NOAH Offshore Anemometry Hub (Blyth)
PLO	OCAN	Oceanic offshore platform and test site	Vaisala meteorological station (WXT530) Solar radiation sensor (Apogee Instruments model SQ-215) UV sensor (SGLUX model UV-Cosine) LIDAR ZX300M Air quality station
CAPITAL ENERGY		Buseco wind farm	Rain sensor and V2 lidar
Eì	NGIE	Rézentières wind farm	Meteorological mast (data from 2018 to 2020) Micro Rain Radar, disdrometer and V2 lidar
Eì	NGIE	San Gregorio Magno wind farm	Meteorological mast, precipitation sensors
,	/TT	Båtskär wind farm	Nacelle weather sensor Disdrometer (nacelle mounted) Precipitation holographic imaging sensor (ICEMET) Ceilometer (ground/substation mounted)

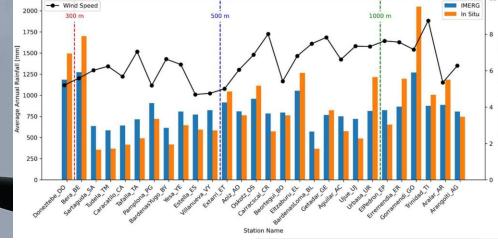
Knowledge hub

Wind + precipitation + sand
Different sites (onshore/offshore/altitude effect/complex terrain)
Satellite data analysis

Equipment & Data:

- Micro Rain Radar, Disdrometers, Lidar
- Radiometer, Particle aerosols (with high volume collector), Meteorological stations
- Solar radiation sensor
- Blade Status & Wind Turbine Scada
- Satellite data calibration





1. Alaiz

1. Alaiz

General Description

Location: Spain

Type of site: High altitude & Complex Terrain

Wind turbine model:

Equipment

Wind: anemometers, lidar

Precipitation: MRR PRO, disdrometer, pluviometer

Other: Blade inspections

Results

Calibration of the precipitation equipment Study of the wind-precipitation dependence Publication on MRR data (Torque 2024)

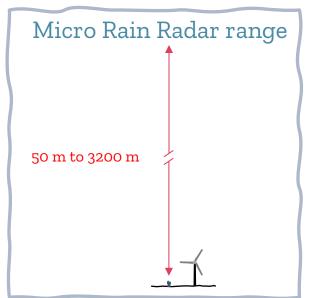
Alaiz (CENER's experimental wind farm)

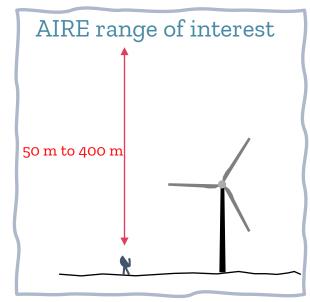
September 2023

2024-2025 precipitation and wind campaign at Alaiz

DTU Lidar installed with the precipitation measurement equipment

Equipment




Micro Rain Radar

Metek MRR-PRO

- Raindrop size distribution
- Precipitation fall speed
- Rain intensity
- Type of precipitation

Data at 0.2 Hz
Measures at different heights

Disdrometer OTT Parsivel²

- Raindrop size distribution
- Precipitation fall speed
- Rain intensity
- Type of precipitation

Measures at ground level Data at 0.02 Hz (1 per minute)

Pluviometer

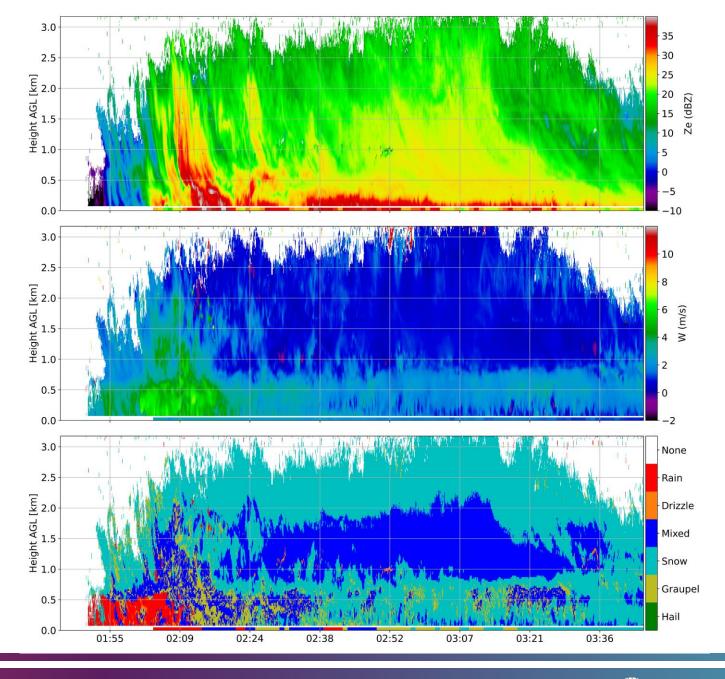
R M YOUNG 52203

Average rainfall intensity

Measures at ground level
Data averaged 1min and 10min

Annual Rain Rate Distributions (DNV-st-0376 rain

environments and rain erosion) 3500 3000 PDF [H/YEAR] 2500 2000 1500 1000 500 0.01 0.1 10 RAIN RATE [MM/H]


Case Study 1

Equivalent radar reflectivity Ze

Vertical fall velocity W

Estimated precipitation type

**Parsivel observations are shown at the lowest level of each panel using the same color scale as MRR data.

2. RISØ

2. RISØ

General Description

Location: Denmark **Type of site:** Coastal

Wind turbine model: V52

Equipment

Wind: cup anemometers, sonics, wind lidar

Precipitation: Disdrometers, MRR PRO, rain gauge

Results

Investigation of the effect of rain on wind lidar data quality

Testing accuracy of disdrometer and rain gauge with droplet experiment

Calibrating MRR and compare to rain gauge

3. Rézentières Wind Farm

3. Rézentières Wind Farm

3. Rézentières Wind Farm

General Description

Location: France

Type of site: High altitude Wind turbine model: Nordex

Wind farm

Equipment

Wind: anemometers

Precipitation: MRR PRO, disdrometer **Other:** SCADA, blade inspections

Results

Detailed study of the influence of precipitation on power performance and wake evolution

4. Levenmouth

4. Levenmouth

General Description

Location: UK

Type of site: Offshore Wind turbine model:

Equipment

Wind: anemometers, lidar

Precipitation: MRR, disdrometer, pluviometer

Other: Blade inspection, testing of LEP, pyranometer

Results

Comparison of disdrometer and weather station rain gauge

Wind lidar and met-mast and turbine wind speed comparison

Comparison pyranometer vs. weather station data

4. PLOCAN

4. PLOCAN

General Description

Location: Spain- Canary Islands

Type of site: Subtropical Climate & Offshore Terrain

Wind turbine model: Gamesa

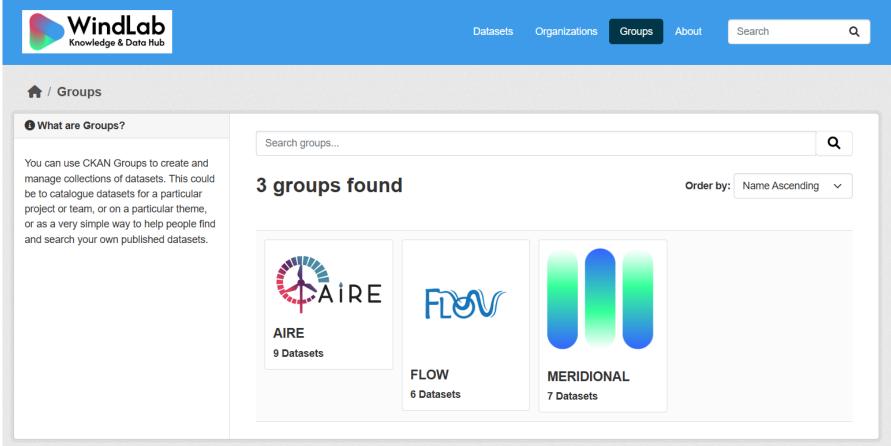
Experimental wind turbine

Equipment

Wind: anemometers, lidar

Precipitation: None

Other: Air quality (aerosol dust), blade inspections


Results

Air quality and damage at blades (in progress)
Influence of dust on wind profile

https://windlab.hlrs.de/

AIRE: the Newsletter & the Webpage

aire-project.eu

A lot of information can be extracted from **MRR and disdrometers** that is very useful for improving wind turbine design and operation (specially for blade erosion).

Calibration is needed regarding traditional equipment (that could be installed in the commercial sites).

The understanding the **mutual influence of precipitation and wind** is crucial to increase power production and reliability

Investigation of the influence of dust on blade erosion and power performance.

Thank you.

@ProjectAire

@Aire Project

<u>AIREproject@cener.com</u> <u>bmendez@cener.com</u>

