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Motivation

Analyse rain impingement on rotating turbine
Understand particle impact and distribution on large
scale wind turbine blades = IEA 15MW

Detailed input for blade damage model
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Simulation levels

3D single

2D airfoil blade (MRF)




Methodology

Lagrangian particle tracking

One-way coupling: only effect of fluid on the particle is considered

No interaction/collision between particles

Fluid domain computed in CFD using steady RANS for the 2D case and 3D single blade
MRF case and unsteady RANS for the full rotor using OpenFOAM
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Airfoil under the rain

17 seconds simulated
Inflow particle distribution according to Rh=5mm/hr

Inflow conditions according to rotor blade in
operation of [IEA 15MW

AoA = 6.5°
Freestream and particle injection velocity 43.2m/s
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Rain particle distribution

- Rain flow intensity parameter Rh describes amount of rain within one hour
- Droplet diameter distribution depends on Rh

- Rhvalues of 0.5mm/hr, 5mm/hr and 20mm/hr have been investigated

- 5mm/hr corresponds to “normal rain” (in northern Germany)
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Src: Castorrini et. Al. “Generation of Surface Maps of Erosion Resistance for Wind Turbine Blades under Rain Flows”, Energies, 2022
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2D airfoil - Results

Particle injection follows theoretical diameter distribution
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Actual hits on the airfoil slightly deviate from theory

Impact force larger on the suction side

=== Rh = smm/hr
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3D blade with moving fluid frame

3D MRF simulated for 3600 seconds

Widely used approach to lower
computational costs
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3D blade with moving fluid frame - Results

. 3D MRF simulated for 3600 seconds

- Most hits towards the tip

- Diameter distribution of particles hitting the blade follow theoretical distribution
- Impact force (source of erosion) higher towards the blade tip
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2D vs. 3D MRF - Comparison

- In 2D the rain cannot distribute freely along the blade span = particle impact
condensed towards leading edge

- 3D allows for spanwise flow = higher distribution width

- Both cases show more impact on the suction side with similar max. impact force
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3D full IEA 15MW rotor

- 85 seconds simulated for the full
rotor

- Both, particles and fluid domain are
solved simultaneously

- Particles adjust trajectory towards
flow field

- Wake rotation visible via normal

velocity component

Visual check confirmed
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3D full rotor - Results

- Most hits mid-span

- Diameter distribution of particles hitting the blade roughly follow theoretical

distribution within simulated time

- Impact force (source of erosion) higher towards the blade tip
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3D MRF vs. 3D full rotor

«  Full rotor computationally
way more expensive

- Both simulations show
similar chordwise particle
distributions

- Total amount of hits 2
magnitudes higher in MRF
(due to longer simulation
period)

loginHits/Ared)

log(nHits/ Area)
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Summary & conclusion

2D airfoil simulations of the local operation conditions similar to a mid-section of the
IEA 15MW turbine
Tools were developed on 2D and brought over to 3D simulations
Rain impingement on rotor studied for a 5MW and a 15MW turbine showing similar
trends

v The impact speed and force for different particle sizes (following the theoretical
distribution) is computed

v Particle distribution spanwise and chordwise

v These simulations give detailed input for blade damage models
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Thank you.

Dr. Hassan Kassem

Senior Researcher

Aerodynamics & Numerical Wind Energy
Meteorology

Fraunhofer IWES
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