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Motivation

• Leading Edge Erosion (LEE) is a major mechanism causing WT performance 

degradation, with growing significance in the future

• Mitigation approaches mainly focus on protective techniques

• Relevant parameters for particle erosion are identified

- Can an airfoil design approach help reduce potential erosion?

- Particularly, how does changing the LE radius effect erosion metrics?
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Method

• Analysis for 𝑅𝑒 = 12 ∙ 106 , AoA = 8°

• FFA-W3-3211 + 3 airfoil modifications with different LE radii (isolated)

Fig. 1: FFA-W3-3211 airfoil (std) and LE radius modifications
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Method

• CFD 2-stage (Eulerian-Lagrangian) multiphase analysis in OpenFOAM [1]

• steady-state RANS solver (SST k − ω turbulence model) for background flow field

• 1-way coupled Lagrangian Particle Tracking (LPT) solver for erosion metrics

Fig. 2: Example of a LPT simulation for flow over a middle section airfoil of IEA15MW turbine (AoA=6.462°) [4]
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Method

• Rain Model:

• Spherical Droplets

• 𝑅ℎ = 5
𝑚𝑚

ℎ
, 𝐿𝑊𝐶 = 0.0889𝑅ℎ

0.84 = 0.344
𝑔

𝑚3 (Marshall & Palmer Rain Model [2])

• 𝐿𝑊𝐶 =
𝐾𝑄

𝑈∞𝐴
➔ Particle Injection Rate

• Injection parallel to flow (gravity neglected)

• Erosion Model:

• 𝐹𝑖𝑚𝑝𝑎𝑐𝑡 =
𝑚𝑝 ∙ 𝑈𝑖𝑚𝑝𝑎𝑐𝑡,𝑛𝑜𝑟𝑚 .

2 ∙ 𝑛𝑝

𝑑𝑝
[𝑘𝑁] with 𝑝: particle

5



LPT Simulation Results
Droplet size distribution

Fig. 3: Size distributions for impacted droplets for non-uniform (left) and uniform (right) input distribution 
(AoA=8°, here: std. Airfoil; dashed lines = input distributions )

𝑁 𝑑𝑝 = 𝑁0𝑒
−𝐼𝑑𝑝

Marshall & Palmer: 𝑁0 = 8000
𝑚−3

𝑚𝑚−1 ,  𝐼 = 4.1𝑅−0.21𝑚𝑚−1
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LPT Simulation Results
Normalized impact force rate over chord distance from stagnation point

Fig. 4: Distributions of normalized impact force rates over chord distance from the 
stagnation point for the 3 LE radius modifications (dashed line = LE) (AoA=8°)
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LPT Simulation Results
Normalized impact force rate distribution around LE

Fig. 5: Distributions of normalized impact force rates around airfoil front for the four LE radius modifications (AoA=8°) 
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LPT Simulation Results
Normalized comparison of integral impact force rates

Fig. 6: Comparison of normalized integral impact forces per second on each airfoil surface (AoA=8°) 
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Conclusions

• Method confirms observation of max. impact around the LE

• LE radius has no significant effect on diameter distribution, but influences impact force

• Regarding the impact force rate, airfoils with a larger LE radius experience:

• Higher and wider peaks

• More symmetrical distributions around the peak

• Higher integral forces per unit time

Confirms potential of airfoil design approach for reducing erosion

First step in parameter space exploration for airfoil optimization
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Comparison: Gliding angle vs. AoA

Fig. 7: Polars (CL/CD vs. AoA) of diff. LE-radii-airfoils, for OF k-ω SST simulations
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Rain Modeling

• 𝐿𝑊𝐶 =
𝐾𝑄

𝑈∞𝐴

• Droplet Size Distribution: 𝑁 𝑑𝑝 = 𝑁0𝑒
−𝐼𝑑𝑝

• Marshall & Palmer Rain Model :

• 𝐿𝑊𝐶 = 0.0889𝑅ℎ
0.84

• 𝑁0 = 8000
𝑚−3

𝑚𝑚−1 ,  𝐼 = 4.1𝑅−0.21𝑚𝑚−1
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CFD Simulations

• Solver

• simpleFoam, icoUncoupledKinematicParcelFoam [1]

• Mesh:

• Total no. of cells: 130560

• 𝑦+ = 0.75

• Domain Size: > 30 chord lengths up- & downstream

• Computational Expense:

• Base Polar Runs: Clock Time ~ 30 mins over one 8-core-node

• LPT Simulations: of same order (600s simulated time for steady particle field)

• Post-Processing: Clock Time ~ 1 min over one 8-core-node, max. memory usage 4410.79 MB
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